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Abstract

An efficient algorithm for the design optimization of the compressible fluid flow problem through a flexible structure

is presented. The methodology has three essential parts: first the behavior of compressible flow in a supersonic diffuser

was studied numerically in quasi-one-dimensional form using a flux splitting method. Second, a fully coupled sequential

iterative procedure was used to solve the steady state aeroelastic problem of a flexible wall diffuser. Finally, a robust

Genetic Algorithm was implemented and used to calculate the optimum shape of the flexible wall diffuser for a

prescribed pressure distribution.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Aerodynamic design optimization has been an important area of research for many years. Although some of the early

work in this area has been limited in applicability because of a lack of computational tools, advances in computational

algorithms and computer hardware have recently fostered intense efforts aimed at aerodynamic and multi-disciplinary

optimization. Shape optimization is, in fact, one of the most frequently faced problems. In fluid mechanics, the search

for optimal aerodynamic shapes dates back to Newton. The search for an axisymmetric body with minimum resistance

from the surrounding fluid, during its motion with constant speed parallel to the axis of symmetry, gave rise to the so-

called hydrodynamic or aerodynamic shapes.

Perhaps the most widely used optimization techniques are those based on the calculation of the gradients in which a

specified objective function is minimized. The gradients of the objective function with respect to the design variables are

used to update the design variables in order to systematically reduce the cost function so as to arrive at a local

minimum. An important step in this process is the determination of these gradients, which are also referred to as

sensitivity derivatives. Several techniques have been investigated for evaluating the sensitivities for aerodynamic

applications. A description of these techniques can be found in papers by Baysal and Eleshaky (1991), Huffman et al.

(1993), Hou et al. (1994), Narducci et al. (1995) and in the references contained therein.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Optimization problems with nonsmooth, nondifferentiable, highly nonlinear and many local minima cost functions

are commonly encountered in many engineering applications including shape optimization. Conventional gradient-

based algorithms are ineffective in these applications due to the problem of local minima or the difficulty in calculating

gradients. Optimization methods that require no gradient and can achieve a global optimal solution offer considerable

advantages in solving these difficult optimization problems. The need for new search algorithms, which are capable of

escaping local optima, has led to the development of nontraditional search and thus stochastic optimization algorithms

(Vanderplaats, 1984). The most important stochastic methods are: Genetic Algorithm (GA) (Holland, 1975; Davis,

1991), Simulated Annealing (Kirkpatrick et al., 1983; Corana et al., 1987; Ingber, 1993) and Tabu Search (Glover and

Laguna, 1997).

In the mid-70 s, researchers (Hicks and Henne, 1977; Lores et al., 1979) began exploring the use of numerical

optimization techniques for the design of aircraft components. However, optimization based on the GA did no get the

attention of researchers until recent years. Quagliarella and Della Cioppa (1994) were among the first who used GA to

optimize the airfoil, utilizing a potential-based flow solver. Vicini and Quagliarella (1997) used GA for multi-point and

multi-objective airfoil applications. Obayashi et al. (1997) applied the algorithm for multi-disciplinary optimization of

transonic wings. A method for aerodynamic shape optimization of airfoils and transonic wing using a real number

encoding GA was proposed by Holst and Pulliam (2001). For the airfoil they used an Euler equation solver, while a

nonlinear potential solver was used for the transonic wing optimization. Examples of multi-design point wing optimization

using Euler and Navier–Stokes flow solvers can be found in papers by Sasaki et al. (2000) and Oyama (2000a, b).

Frank and Shubin (1992) compare three optimization-based methods for solving aerodynamic design problems of a

1-D duct flow with rigid walls. Their optimization methods are (i) the black-box method with finite-difference gradients,

(ii) a modification where gradients are found by an algorithm based on the implicit function theorem, (iii) an all-at-once

method where the flow and design variables are simultaneously altered. They concluded that the third approach is

dramatically less expensive than the other approaches. Shubin (1995) presented both design and analysis of the same

model with flexible walls. Again he used different gradient-based optimization approaches for calculating the optimum

shape of the duct to a prescribed pressure.

Recently, Periaux et al. (2001) proposed a new evolutionary strategy for the multiple objective design optimization of

internal aerodynamic shape operating with transonic flow. Their global shape optimization was to find a shape of a

nozzle which realizes a prescribed pressure distribution on its boundary for a given flow condition. They used game

theory to replace a global optimization problem by a noncooperative game based on Nash equilibrium with several

players solving local constrained sub-optimization tasks. The transonic flow simulator uses a full potential solver taking

advantage of domain decomposition methods and GAs for the matching of nonlinear local solutions. However, they

did not consider wall flexibility.

A disadvantage of the GA approach is expense. In general, the number of function evaluation required for a GA

algorithm exceeds the number required by a finite-difference-based gradient optimization (Bock, 1990; Obayashi and

Tsukahara, 1997). Recently, Doorly et al. (1999, 2000, 2001), applied a parallel GA for aerodynamic design optimization.

They applied the method to a 2-D wing section and discussed the advantage of the method over the sequential GA.

This paper is concerned with design optimization of a supersonic nozzle with flexible walls using a GA. First, the

behavior of compressible flow in the supersonic diffuser was calculated numerically using a flux splitting method.

Second, a fully coupled sequential iterative procedure was used to solve the steady state aeroelastic problem of the

flexible wall diffuser. Finally, a robust GA was implemented and used for the shape optimization of the diffuser.
2. Problem description

A schematic of the physical model on coordinate system is shown in Fig. 1. The physical model consists of an

axisymmetric supersonic diffuser with flexible walls. It was assumed that the diffuser has been constrained at both ends

(Points A and B in Fig. 1). A steady airstream (g ¼ 1:4) passes through the diffuser. For simplicity, only the variation of

variables in the streamwise direction is considered.

The profile of the diffuser wall is created either by an algebraic equation or by spline curves. This matter will be

discussed in more detail in Section 6.
3. Fluid–solid interaction

For a complete solid–fluid interaction, three distinct gradients are necessary: (i) a flow solver, (ii) a structural analysis

code and (iii) a coupling interface code. In this paper, the behavior of compressible flow in a supersonic diffuser was
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Fig. 1. Structural model of the diffuser.
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studied numerically in quasi-one-dimensional form using a flux splitting method. For structural analysis, a finite

element approach was used to compute the nodal displacement of the diffuser wall. Finally, a fully coupled sequential

iterative procedure was used to solve the steady state aeroelastic problem of a flexible wall diffuser. Each of the above

items will be described briefly.
3.1. The flow solver

The governing equations in quasi-one-dimensional flux vector form may be written as

@

@t
ðSQÞ þ

@E

@x
�H ¼ 0, (1)

where Q is the vector of conserved variables, E is the inviscid flux vector in the streamwise direction, H denotes

the source (load) vector and S is the cross-sectional area. These may be further expressed by the primary

variables as

Q ¼ r ru ret

� �T
, (2)

E ¼ ru ru2 þ p ðret þ pÞu
h iT

, (3)

H ¼ 0 p dS
dx

0
h iT

. (4)

In the above equations, p, r and u are nondimensionalized pressure, density and velocity, respectively, and et

represents the total energy per unit mass, the quantities in the above equations are nondimensionalized using the

following scheme:

r ¼
r̄
r0
; u ¼

ū

u0
; p ¼

p̄

r0u20
,

et ¼
ēt

u20
; a ¼

ā

u0
; M ¼

ū

ā
, ð5Þ

where r̄; ū; p̄; ēt and ā are dimensional density, velocity, pressure, total energy and sound speed, respectively, and M is

the Mach number. The quantities with zero sub-index are the flow characteristics at the nozzle inlet.

To solve the above set of equations, a set of proper boundary conditions is required. At the supersonic inflow

boundary, nondimensionalized variables are specified, namely M ¼ 1:5 (Mach number), p ¼ 1 and r ¼ 1. At the outlet,

the flow is subsonic. Therefore, two variables will be determined from the internal computational cells using a second-

order implicit extrapolation. The third one, i.e., the subsonic pressure, should be specified and that is set to p ¼ 2:5 for

all the cases studied in this paper.

In order to accurately capture the shock wave discontinuity, a finite-difference flux vector splitting method has been

used as the flow solver. In particular, we use the flux vector splitting method of Steger and Warming (1979). A steady

state solution is obtained in a time-asymptotic sense, using an implicit discretization of governing equations.

The computational flow field is divided into N finite-difference meshes, where N indicates the spatial intervals

used in the streamwise direction. The implicit discretized form of conservation equation may be expressed as
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(Steger and Warming, 1979)

�
Dt

Dx
Aþi�1

� �
DQi�1 þ SI þ

Dt

Dx
ðAþi � A�i Þ � Dt Bi

� �
DQi

þ
Dt

Dx
A�iþ1

� �
DQiþ1 ¼ �

Dt

Dx
ðEþi � Eþi�1 þ E�iþ1 � E�i Þ þ Dt Hi, ð6Þ

in which A and B are the derivatives of E and H with respect to Q, Dt and Dx are time and spatial steps, respectively,

and I is the unity matrix of order 3. The superscript +/� denotes positive/negative eigenvalues of matrices A and B.

Moreover, a backward finite-difference approximation has been used for positive matrices, while a forward one is

adopted for negative matrices. The system of linear equations (6) was solved for DQ, and then the matrix of the

coefficients is updated using Qnþ1 ¼ Qn þ DQ for the next iteration. A steady state solution is said to have been

obtained when the variation of properties (e.g., pressure) is very small between two iterations.

Initially the diffuser has been discretized uniformly. Once a converged solution is obtained, the regions with high

gradients where more computational cells are needed were determined. A mathematical technique is then used to cluster

the grid in high-gradient regions for accelerating the convergence speed (Hoffmann and Chiang, 1998). The

convergency is controlled through the following relation:

XN

i¼1

Pnþ1
i � Pn

i

�� ��oe, (7)

where e is a very small number (e.g., e ¼ 10�3), Pi is pressure distribution over all nodes and superscripts n+1 and n

denote new and old time steps, respectively. This procedure is repeated several times until a grid-independent solution is

achieved.

3.2. Flexible wall model

A finite element approach was used to compute the nodal displacement of the diffuser wall. The wall was modelled by

both beam elements and 2-D 4-noded axisymmetric elements. As the results were almost the same, the beam elements

are used throughout this study as will be explained later.

The deformed shape of a beam element is described by the transverse displacement and slope of the beam. The beam

is subjected to a distributed pressure created by flow passing in the diffuser. Using a standard finite element

formulation, the strain energy for an arbitrary beam element can be written as (Rao, 1999)

LðeÞ ¼
EI

2

Z Dx

0

d2v

dx2

� �2

dx, (8)

where E, I and v are, respectively, the modulus of elasticity, moment of inertia of the beam cross-section and nodal

values associated with a beam element. By assuming a Hermitian shape function, the stiffness matrix may be obtained

by minimizing the strain energy of the element. Detailed descriptions on this formulation for obtaining the element

stiffness and load vector can be found in Rao (1999). Once the element characteristics are found in a common global

system, the next step is to construct the overall system equations. This yields

½K �fUg ¼ fFg, (9)

where [K] and {F} are the stiffness matrix and load vector, respectively. The displacement vector, {U}, has 3�N

components which correspond to longitudinal displacement, lateral displacement and slope at each node of the diffuser

wall, where N denotes the number of nodes.

A computer program was written to calculate the nodal displacement of the beam subjected to distributed-pressure

calculated from the flow field. In this study, we used the same mesh for both structural and fluid analyses. Because the

computational domains share nodes on the common boundary, the compatibility conditions on the interface are

naturally satisfied.

3.3. The fluid–solid coupling

The physical models used in treating fluid–structure interaction phenomena vary enormously in their complexity

and range of applicability. To understand these phenomena, after modelling both the structure and the fluid, we

need to use a process to couple these two parts of the problem in a proper fashion. In this way, two distinct methods
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for coupled field analysis can be identified; namely, the direct method and the sequential method. In the direct

method, the analysis contains all the necessary degrees of freedom. Element matrices and load vectors contain

all the necessary terms associated with both fields in this method. Sequential coupling, on the other hand,

involves several analyses, each belonging to a different field. In this method, the two fields will be coupled by

applying the results of the first analysis as a load vector for the second analysis. In this study, since the coupling

is not very strong, we used the latter method which is simpler to apply and needs less computational effort than the

former one.

The solution of Eq. (9) would require the structural left-hand side to be solved simultaneously with the solution of

flow field on the right-hand side. However, Eq. (9) can be solved sequentially, i.e., solved for the flow field and then the

load (pressure) is applied on the structure and the new shape of the wall is found. Using this new shape, the diffuser is

discretized and solved again. This procedure will be repeated until the changes in the shape of the wall are smaller than a

prescribed tolerance. To summarize, the steps that should be followed to get the final shape of the diffuser are: (i) start

with an initial shape of the diffuser wall; (ii) solve the flow equations iteratively; (iii) solve the structural equations and

compute the nodal displacements; (iv) update the wall profile; (v) repeat steps 2–4 until a converged solution is

obtained.
4. Optimization algorithm

4.1. Genetic algorithm

Overall, one can categorize the optimization methods into two major classes, namely gradient-based methods and

global-based methods. However, in many engineering applications conventional gradient-based algorithms are

ineffective due to the problem of local minima or the difficulty in calculating gradients. The GA is one of the

optimization methods that require no gradient and can achieve a global optimal solution (Holland, 1975; Davis, 1991).

GAs are called so because they attempt to use the supposition of evolution as a basic mechanism for improvement, that

is, learning/survival of the fittest, in solving a problem. The GAs are computationally simple but powerful and not

limited by assumptions about the search space. Following the terminology of true genetic researches, the computational

GAs developed by Holland (1975) and his students encode potential solutions into chromosome-like structures and

then allow these structures to compete, reproduce and mutate to produce better solutions over time. GAs have been

increasingly used in optimization studies over the past decade and have more recently been used in multi-disciplinary

optimization.

Many facts control the way that a GA works. A potential solution has first to be encoded along with all of the other

potential solutions that form a generation. This population is then fed one at a time to the objective function so that a

measure of the performance of each number of the population can be ascertained. Those with better performance then

have a higher probability of surviving the tournament selection process to reproduce the next generation. Mutation is

allowed to occur and helps preserve genetic diversity. Over time, as generations build on the successes of previous

generations, the performance of the entire population increases as the algorithm learns what elite values produce good

answers. Poor performers die off and over many generations, the best performances split and recombine with each other

to produce even better solutions.

Basic operators used to create successive improved populations include selection, crossover, mutation and

interchange. Typically, two designs selected from a population are mated to create child designs. In order to ensure

that good designs propagate to the child populations, a higher chance to be selected as parents is given to those

designs that are better than the rest of the population. Selection is the part of the algorithm that provides better

opportunity to good designs by implementing, for example, a roulette wheel which is divided into slices representing

different designs. Those designs with better characteristics are given a proportionally larger slice of the wheel. When

the wheel is spun (simulated by using a random number generator between 0 and 1, where the circumference of the

wheel is normalized to be 1), those designs that occupy larger slices of the wheel have a better chance to be chosen as

parent designs.

Once a pair of parents is selected, the mating of the pair also involves a random process called crossover. For

example, by splicing together the left part of the string of one parent with the right part of the string of the other parent,

two child strings are generated. The developed GA program can use different crossover relations. The most important

ones that can be used in the program are: (a) arithmetic crossover; (b) heuristic crossover; (c) simple crossover.

Mutation is implemented by changing, at random and with small probability, the value of a gene and serves the

purposes of avoiding premature loss of diversity in the designs. Since inferior designs may have some good traits that
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can get lost in the gene pool when these designs are not selected as parents, by introducing occasional mutations,

different portions of the design space can be investigated for valuable information. Mutation is a random process where

a single bit changes its value from 0 to 1 or 1 to 0. The applied mutation methods in the program are the most popular

types: (i) multi-nonuniform mutation; (ii) nonuniform mutation; (iii) uniform mutation.

GAs are global optimizers because of mutation and their general probabilistic nongradient nature. However, in

engineering applications, good answers are desired as fast as possible. Whether the answer is the absolute global

optimum or not is less of a concern than whether a good answer can be found in the time allotted by management.

Besides, for complicated problems, there is no analytical way to determine the global optimum and so arguments over

whether the true optimum has been found are academic.
4.2. Optimization strategy

In the inverse problem one must usually determine unknowns in an indirect way. For example, our inverse problem is

to find the diffuser geometry, given the flow speed and the prescribed pressure distribution on its surface. In order to

carry out any optimization strategy, the following merits need to be carefully defined.
4.2.1. The objective function

The inverse design of diffuser consists of finding the geometric shape whose pressure distribution along the wall p(x),

matches a prescribed pressure distribution p̂ðxÞ, where x is the Cartesian coordinate measured along the diffuser axis. A

discrete objective function, I, may be defined as (Dadone and Grossman, 2000)

I ¼
XN

i¼1

pi � p̂i

� �2
: (10)

4.2.2. The design variables

As mentioned before, we wish to find the optimum geometric shape relative to global minimum of objective function.

In this study, we used two different definitions (two cases) for the diffuser wall shape.

In the first case, we assumed that the diffuser shape follows the algebraic equation

sðxÞ ¼ aþ b tanhðcx� dÞ. (11)

There are four unknowns in this relation, but one of them should be computed in terms of three others due to the

constant rate of mass flow during the solution procedure. This will be necessary for obtaining a unique answer for the

problem. The value of inlet area is fixed at 1.0512, thus using Eq. (11) one can arrives at

a ¼ 1:0512� b tanhðcx� dÞ, (12)

therefore, three design variables, i.e., b, c and d, will be found by the optimization algorithm so that the objective

function, I, has a minimum value.

In the second case, the diffuser shape profile will be created by a spline (de Boor, 1978)

ZðtÞ ¼ ð1� tÞ3Zm1 þ 3ð1� tÞ2tZc1 þ 3ð1� tÞt2Zc2 þ t3Zm2, (13)

where t is a number between 0 and 1. Z(t) is a complex number

ZðtÞ ¼ xþ iSðxÞ, (14)

Zm1 and Zm2 are two fixed complex numbers that represent the coordinates of the two ends of the wall curve, and

Zc1, Zc2 are control point coordinates in the complex plane. Moving the control points in the complex plane will

produce different shapes for the diffuser wall. Therefore, the design variables in this case are the coordinates of the

control points, i.e., xc1, Sc1, xc2 and Sc2.
4.2.3. The design constraints

Some geometrical constraints are put on the design variables to avoid nonpractical shapes for the diffuser wall. In this

way, no divergence will occur in the fluid–structure interaction algorithm.
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5. Numerical implementation

Based on the above formulation, a code was developed to calculate the shape of a diffuser with flexible walls in order

to have the same pressure distribution along its axis of symmetry as a diffuser with rigid walls. The developed code has

four main parts: (i) a flow solver in quasi-one-dimensional form using a flux splitting method with shock capturing

capability; (ii) a finite element program for the calculation of nodal displacement of the wall using standard beam

theory; (iii) a sequential solid–fluid interaction algorithm that works iteratively to find the final shape of the diffuser; (iv)

a robust adaptive real-coded GA algorithm for the design optimization.
5.1. Case 1—diffuser with rigid wall

As a preliminary validation case, a supersonic diffuser with rigid wall was considered. The aim is to demonstrate the

ability of the flow solver to capture the shock correctly. The diffuser wall profile was calculated using Eq. (11) where the

values of b, c and d are set to 0.347, 0.8 and 4, respectively. The value of a has been computed from Eq. (12). The

supersonic inlet Mach number for this test case is set to 1.5 and the subsonic exit pressure is equal to 2.5 (normalized to
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inlet pressure). The flow was calculated and the shock was captured successfully. Figs. 2(a) and (b) show the diffuser

shape and the pressure distribution along its length. As it is clear from the figure, shock is established at x/L0 ¼ 0.5.
5.2. Case 2—diffuser with flexible wall

In the second case, the same diffuser but with flexible walls was considered. All geometrical and fluid properties as

well as mesh density were the same as in the previous example. The stiffness of the wall will be controlled through the

stiffness of the beam section (i.e., EI). A complete fluid–solid interaction should be considered to find out the final shape

of the wall and the ultimate position of the shock inside the diffuser. Figs. 3 and 4 show the convergence toward the

final solution for both shock position and pressure distribution along the diffuser.

Fig. 5 depicts the final results for the diffuser with rigid and flexible walls. The pressure distribution is also plotted on

the same figure for better illustration. As the wall deflects towards the inner side (because the ambient pressure is higher

than the inside pressure), the cross-sectional area of the diffuser reduces and, therefore, the shock moves forward

towards the diffuser outlet.
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variables (Eq. (11))).
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5.3. Case 3—inverse design problem (optimization)

The idea of inverse design is to calculate the proper shape of a diffuser with flexible walls, so that its pressure

distribution becomes the same as a diffuser with rigid walls. Generally, the design of diffusers is based on the rigid wall

assumptions. However, if the flexibility is high, a modification in the profile should be made in order to produce the

same pressure distribution as a rigid wall diffuser. Thus, the idea here is to find the coefficients b, c and d in Eq. (11) for

the diffuser with flexible wall to have the same pressure distribution as the one shown in Fig. 2(b). In other words, we

are searching the variable space to find out the minimum of the quantity I in Eq. (10), in which fp̂g is the pressure

distribution along the rigid wall diffuser. Any other pressure distribution may also be recommended with respect to the

diffuser application by the designer.

The aforementioned case was solved using the GA. The GA was first tuned using heuristic crossover and multi-

nonuniform mutation. The number of populations in each generation of GA was set to 100. The crossover rate was set

to 90% and the mutation rate was 0.2%. The results for EI ¼ EI0 ¼ 1� 105, are shown in Figs. 6(a) and (b). Fig. 6(a)

shows the target and the calculated pressure distribution. It is clear that the final and the target are in good agreement.

The convergence rate for the GA to reach the optimum of the objective function is depicted in Fig. 6(b). The value of

the objective function becomes flat after 900 generations. Increasing the number of generations in the GA algorithm
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may further reduce this value. However, this needs more CPU time and computational effort with little gain in the

accuracy of the pressure distribution. Note that for every GA population, a complete fluid–solid interaction should be

carried out.

The same problem was solved again using splines, Eq. (13) instead of the algebraic formula in Eq. (11). Figs. 7(a)

and (b) depict the final and target pressure distribution and the convergence history of GA. With four design variables

for diffuser wall, the GA was executed for 1000 generations. The number of populations in each generation of GA was

set to 100. The arithmetic crossover and nonuniform mutation options were used for this case. The crossover and

mutation rate were set to 90% and 0.2%, respectively. Fig. 7(a) shows that the calculated and the target pressure

distributions are coincident, indicating that the solution has sufficiently converged, particularly in the very sensitive

shock transition region, where a derivative-based optimization process will have convergence difficulties with numerical

sensitivity derivatives. The optimum values of the design variables found by GA are 7.19, 1.027, 2.206 and 1.602 for xc1,

Sc1, xc2 and Sc2, respectively.

5.4. Effect of wall flexibility on the final shape of the diffuser

Fig. 8 shows the final shape of the diffuser for different wall stiffnesses. Again the splines with four variables were used

for creating the shape of the diffuser. Only the upper half of the diffuser is shown in this figure for better visualization.

The problem was solved using heuristic crossover and multi-nonuniform mutation as GA operators. The population size

was set to 60. All cases in this figure have the same pressure distribution along the diffuser axis of symmetry. However,

due to the various stiffnesses of the wall, the diffuser outer shapes are different. By decreasing the stiffness of the wall

(more flexible structure), the deviation from the original shape of the diffuser (diffuser with solid wall) was increased.

6. Conclusions

The genetic algorithm (GA) is well suited to designing complete aerodynamic modules. Unlike gradient-based

optimization approaches, GAs find good designs by learning their own design lessons, without having to be given a

starting solution or sensitivity derivatives. Even for large structural deformations, GA can easily handle continuous and

discrete variables and work very well without divergence.
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